Chapter 10, Part A

Inference about Means and Proportions with Two Populations

- Inferences About the Difference Between Two Population Means: $\sigma_{\rm 1}$ and $\sigma_{\rm 2}$ Known
- Inferences About the Difference Between Two Population Means: $\sigma_{\rm 1}$ and $\sigma_{\rm 2}$ Unknown
- Inferences About the Difference Between Two Population Means: Matched Samples

Inferences about the Difference between Two Population Means: σ_1 and σ_2 Known

- Interval Estimation of $\mu_1 \mu_2$
- Hypothesis Tests About $\mu_1 \mu_2$

Estimating the Difference between Two Population Means (1 of 2)

- Let μ_1 equal the mean of population 1 and μ_2 equal the mean of population 2.
- The difference between the two population means is $\mu_1 \mu_2$.
- To estimate $\mu_1 \mu_2$, we will select a simple random sample of size n_1 from population 1 and a simple random sample of size n_2 from population 2.
- Let \overline{x}_1 equal the mean of sample 1 and \overline{x}_2 equal the mean of sample 2.
- The point estimator of the difference between the means of the populations 1 and 2 is $\overline{X}_1 \overline{X}_2$.

Sampling Distribution of $\bar{x}_1 - \bar{x}_2$

Standard Deviation (Standard Error)

$$\sigma_{\bar{x}_{1}-\bar{x}_{2}} = \sqrt{\frac{(\sigma_{1})^{2}}{n_{1}} + \frac{(\sigma_{2})^{2}}{n_{2}}}$$

where: σ_1 = standard deviation of population 1 σ_2 = standard deviation of population 2 n_1 = sample size from population 1 n_2 = sample size from population 2

Interval Estimate of $\mu_1 - \mu_2$: σ_1 and σ_2 Known (1 of 4)

Interval Estimate

$$\left(\overline{\boldsymbol{x}_{1}}-\overline{\boldsymbol{x}_{2}}\right)\pm \boldsymbol{z}_{\alpha/2}\sqrt{\frac{\left(\sigma_{1}\right)^{2}}{n_{1}}+\frac{\left(\sigma_{2}\right)^{2}}{n_{2}}}$$

where:

 $1 - \alpha$ is the confidence coefficient

Interval Estimate of $\mu_1 - \mu_2$: σ_1 and σ_2 Known (2 of 4)

Example: Homestyle Furniture

Homestyle sells furniture at two stores in Buffalo, New York: One is in the inner city and other in suburban shopping centre. There is difference in the types of furniture sold in each store, and manager believes this can be attributed to the difference in customer demographics.

The manager wants to investigate the difference in mean age of customers who shop at two stores.

Interval Estimate of $\mu_1 - \mu_2$: σ_1 and σ_2 Known (3 of 4)

Example: Homestyle Furniture

	Inner-City Store	Suburban Store
Sample Size	36	49
Sample Mean	40 years	35 years
Standard deviation	9 years	10 years
(Based on previous studies)		

Interval Estimate of $\mu_1 - \mu_2$: σ_1 and σ_2 Known (4 of 4)

Example: Homestyle Furniture

Let us develop a 95% confidence interval estimate of the difference between the mean age of the customers who shop at two stores.

Estimating the Difference between Two Population Means (2 of 2)

Point Estimate of $\mu_1 - \mu_2$ (1 of 2)

Example: Homestyle Furniture

Point estimate of $\mu_1 - \mu_2 = \overline{x}_1 - \overline{x}_2 = 40 - 35 = 5$ years

where: μ_1 = mean age of inner-city store customers μ_2 = mean age of suburban store customers

Interval Estimation of $\mu_1 - \mu_2$: σ_1 and σ_2 Known (1 of 2)

Example: Homestyle Furniture

$$\left(\overline{x}_{1}-\overline{x}_{2}\right)\pm z_{\alpha/2}\sqrt{\frac{(\sigma_{1})^{2}}{n_{1}}+\frac{(\sigma_{2})^{2}}{n_{2}}}=5\pm1.96\sqrt{\frac{(9)^{2}}{36}+\frac{(10)^{2}}{49}}$$

 $5\pm4.06~\text{or}$.94 years to 9.06 years

We are 95% confident that the difference between mean age of inner-city and suburban store customers is .94 years to 9.06 years.

Interval Estimation of $\mu_1 - \mu_2$: σ_1 and σ_2 Known (2 of 2)

Example: Homestyle Furniture

 Excel Formula and Value Worksheet

	A	в	С	D	Е		F	G		н					
1	Inner City S	uburban		Interval Estimate o	f Difference in Popula	tion	Means	:							
2	38	29		σ_1 :	σ_1 and σ_2 Known Case										
3	46	35													
4	32	39			Inner City	Sub	urban								
5	23	10		Sample Size	-COUNT(A2:A37)	-C0	DUNT(B2	:B50)							
6	39	37		Sample Mean	=AVERAGE(A2:A37)	=A1	VERAGE	(B2:B50)							
7	40	52													
8	35	40		Population Standard Deviation	9	10									
9	35	37		Standard Error	=SQRT(E8^2/E5+F8^2/F5		٨	в		C	D	F	F	G	н
10	36	43				1	Inner Ci	tr Suburi	han		Interval Estimate of Diffe	rence in	Populatio	n Meaner	11
11	41	38		Confidence Coefficient	0.95	1	Inner Ci	ty Suburi	oan		Interval Esumate of Difference in Population Means:				
12	32	28		Level of Significance	=1-E11	2		38	29		σ_1 and σ_2	Known (ase		
13	38	37		z Value	=NORM.S.INV(1-E12/2)	3		46	35						
14	44	51		Margin of Error	=E13*E9	4		32	39			Inner City	Suburban		
15	50	23				5		23	10		Sample Size	36	49		
16	47	25		Point Estimate of Difference	-E6-F6	6	-	39	37		Sample Mean	40	35		
17	59	37		Lower Limit	=E16-E14	7		40	52						
18	38	38		Upper Limit	=E16+E14	8		35	40		Population Standard Deviation	9	10		
36	44	19				9		35	37		Standard Error	2.07			
37	62	40				10		36	43						
49		22				11		41	38		Confidence Coefficient	0.95			
50		47				12		32	28		Level of Significance	0.05			
51						13		38	37		z Value	1.960			
						14		44	51		Margin of Error	4.06			
						15		50	23						
						16		47	25		Point Estimate of Difference	5			
						17		59	37		Lower Limit	0.94			
						18		38	38		Upper Limit	9.06			
						36		44	19						
						37		62	40						
						49			22						
						50			47						
						51									

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Known (1 of 8)

Hypotheses

Left-tailed $H_0: \mu_1 - \mu_2 \ge D_0$

 $H_{\rm a}: \mu_1 - \mu_2 < D_0$

Right-tailed

 $H_{0}: \mu_{1} - \mu_{2} \le D_{0}$ $H_{a}: \mu_{1} - \mu_{2} > D_{0}$

Two-tailed

 $H_0: \mu_1 - \mu_2 = D_0$ $H_a: \mu_1 - \mu_2 \neq D_0$

Test Statistic

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Known (2 of 8)

Example: Training Centers

A standardized examination was given to the individuals who are trained at two different centres to evaluate the difference in education quality between them.

Let

 μ_1 = The mean examination score for the population of individuals trained at center A μ_2 = The mean examination score for the population of individuals trained at center B

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Known (3 of 8)

Example: Training Centers

	<u>A</u>	<u>B</u>
Sample Size	30	40
Sample Mean	82	78
Standard deviation	10	10

(Based on previous studies)

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Known (4 of 8)

Example: Training Centers

Can we conclude, using α = .05, that no difference exists between the training quality provided at the two centers?

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Known (5 of 8)

Example: Training Centers

CENGAGE

- p-Value and Critical Value Approaches
- 1. Develop the hypotheses. $H_0: \mu_1 \mu_2 = 0$

 $H_{\rm a}$: $\mu_1 - \mu_2 \neq 0$

(two-tailed test)

- where μ_1 = The mean examination score for the population of individuals trained at center A
 - μ_2 = The mean examination score for the population of individuals trained at center B
- 2. Specify the level of significance $\alpha = .05$

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Known (6 of 8)

Example: Training Centers

p-Value and Critical Value Approaches

3. Compute the value of the test statistic.

$$Z = \frac{(\overline{x}_1 - \overline{x}_2) - D_0}{\sqrt{\frac{(\sigma_1)^2}{n_1} + \frac{(\sigma_2)^2}{n_2}}}$$
$$Z = \frac{(82 - 78) - 0}{\sqrt{\frac{(10)^2}{30} + \frac{(10)^2}{40}}} = \frac{4}{2.4152} = 1.66$$

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Known (7 of 8)

Example: Training Centers

p-Value Approach

4. Compute the *p*-value.

For z = 1.66, the area to the left is .9515.

The area in the upper tail of the distribution is

1.0000 - .9515 = .0485*p*-value = 2(.0485) = .0970

5. Determine whether to reject H_0 .

Because *p*-value > α = .05, we cannot reject H_0 .

At the .05 level of significance, the sample evidence indicates there is no difference in quality between training centers.

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Known (8 of 8)

Example: Training Centers

- **Critical Value Approach**
- 4. Determine the critical value and rejection rule.

For $\alpha = .05$, $z_{.025} = 1.96$ Reject H_0 if $z \ge 1.96$

5. Determine whether to reject H_0 .

Because z = 1.66 < 1.96, we cannot reject H_0 .

At the .05 level of significance, the sample evidence indicates there is no difference in quality between training centers.

CENGAGE

Excel's "z-Test: Two Sample for Means" Tool (1 of 3)

- Step 1 Click the **Data** tab on the Ribbon.
- Step 2 In the Analysis group, click Data Analysis.
- Step 3 Choose *z*-Test: Two Sample for Means from the list of Analysis Tools.
- Step 4 When the *z*-Test: Two Sample for Means dialog box appears, as shown on the next slide.

Excel's "z-Test: Two Sample for Means" Tool (2 of 3)

- Enter *A1:A31* in the **Variable 1 Range** box.
- Enter *B1: B41* in the **Variable 2 Range** box.
- Enter *0* in **Hypothesized Mean Difference** box.
- Enter 100 in Variable 1 and 2 Variance (known).
- Select the check box for Labels.
- Enter .05 in the Alpha box.
- Select output range and enter D4.
- Click OK.

CENGAGE

Input		OF
Variable <u>1</u> Range:	\$A\$1:\$A\$31	UK
Variable <u>2</u> Range:	\$B\$1:\$B\$41	Cancel
Hypothesized Mean Difference:	0	Help
Variable 1 Variance (known):	100	
Variable 2 Variance (known):	100	
Labels		
Alpha: 0.05		
Output options		
Output Range:	D4	
New Worksheet Ply:		
-		

Excel's "z-Test: Two Sample for Means" Tool (3 of 3)

 Excel results for the hypothesis test about equality of exam scores at two training centers.

1	A	В	С	D	E	F	G
1	Center A	Center B					
2	97	64					
3	95	85					
4	89	72		z-Test: Two Sample for Means			
5	79	64					
6	78	74			Center A	Center B	
7	87	93		Mean	82	78	
8	83	70		Known Variance	100	100	
9	94	79		Observations	30	40	
10	76	79		Hypothesized Mean Difference	0		
11	79	75		z	1.6562		
12	83	66		P(Z<=z) one-tail	0.0488		
13	84	83		z Critical one-tail	1.6449		
14	76	74		P(Z<=z) two-tail	0.0977		
15	82	70		z Critical two-tail	1.9600		
16	85	82					
17	85	82					
29	88	65					
30	60	78					
31	73	66					
32		84					
40		80					
41		76					
42							

Inferences about the Difference between Two Population Means: σ_1 and σ_2 Unknown

- Interval Estimation of $\mu_1 \mu_2$
- Hypothesis Tests about $\mu_1 \mu_2$

Interval Estimation of $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (1 of 5)

When σ_1 and σ_2 are unknown, we will:

- Use the sample standard deviations s_1 and s_2 as estimates of σ_1 and σ_2 , and
- Replace $z_{\alpha/2}$ with $t_{\alpha/2}$.

Interval Estimation of $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (2 of 5)

Interval Estimate

$$\overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}$$

where the degrees of freedom for $t_{\alpha/2}$ are:

$$df = \frac{\left(\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{(s_1)^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{(s_2)^2}{n_2}\right)^2}$$

Difference between Two Population Means: σ_1 and σ_2 Unknown (1 of 3)

Example: Clearwater National Bank

Clearwater National Bank wants to compare the account checking practices by the customers at two of its branch banks: Cherry Grove Branch and Beechmont Branch. A random sample of 28 and 22 checking accounts is selected from these branches respectively. The sample statistics are shown on the next slide.

Difference between Two Population Means: σ_1 and σ_2 Unknown (2 of 3)

Example: Clearwater National Bank

	Cherry Grove	Beechmont
Sample Size	28	22
Sample Mean	\$1025	\$910
Sample Standard	\$150	\$125
Deviation		

Difference between Two Population Means: σ_1 and σ_2 Unknown (3 of 3)

Example: Clearwater National Bank

Let us develop a 95% confidence interval estimate of the difference between the population mean checking account balances at the two branch banks.

Point Estimate of $\mu_1 - \mu_2$ (2 of 2)

Example: Clearwater National Bank

Point estimate of $\mu_1 - \mu_2 = \overline{x}_1 - \overline{x}_2 = 1,025 - 910 = 115$

where: μ_1 = mean checking account balance maintained by the population of Cherry Grove customers μ_2 = mean checking account balance maintained by the population of Beechmont customers

Interval Estimation of $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (3 of 5)

Example: Clearwater National Bank

The degrees of freedom for $t_{\alpha/2}$ are:

$$df = \frac{\left[\frac{(150)^2}{28} + \frac{(125)^2}{22}\right]^2}{\frac{1}{28 - 1}\left[\frac{(150)^2}{28}\right]^2 + \frac{1}{22 - 1}\left[\frac{(125)^2}{22}\right]^2} = 47.8 = 47$$

with
$$\alpha/2 = .025$$
 and $df = 47$, $t_{\alpha/2} = 2.012$

Interval Estimation of $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (4 of 5)

Example: Clearwater National Bank

$$\overline{X}_{1} - \overline{X}_{2} \pm t_{\alpha/2} \sqrt{\frac{(S_{1})^{2}}{n_{1}} + \frac{(S_{2})^{2}}{n_{2}}}$$

$$025 - 910 \pm 2.012 \sqrt{\frac{(150)^{2}}{28} + \frac{(125)^{2}}{22}}$$

$115 \pm 78 =$ \$37 to \$193

We are 95% confident that the difference between the mean accounting checking balances maintained by the customers at Cherry Grove branch and the Beechmont branch is \$37 to \$193.

Interval Estimation of $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (5 of 5)

Example: Clearwater National Bank

 Excel Formula and Value Worksheet

1	A B	C D	Е	4	F		G				
Che	rry Grove Beechmont	Interval Estim	ate of Difference in Population Means:								
1263	996.7		σ1 and σ2 Unknown Case								
897	897										
849	912		Cherry Grove	Be	echmont						
891	894.9	Sample Size	-COUNT(A2:A29)	-C	OUNT(B2:B23)						
964	785	Sample Mean	-AVERAGE(A2:A29)	-0	VERAGE(B2:B2	3)					
810	750.7	Sample Standard Deviation	=STDEV.S(A2:A29)	=S	TDEV.S(B2:B23)	10					
877	882.2					D	6	D		T	0
899	1110	Estimate of Variance	=E7^2/E5+F7^2/F5	100		D		Internal Patienate of Diff	E Depuis	P. I.	0
847	907.2	Standard Error	=SQRT(E9)	21	Cherry Grove	Beechm	mt	Interval Estimate of Din	erence in Popula	tion Means	
1 1070	1226.1		terester terester	2	1263	9	97	σ_1 and σ_2	Unknown Case		
1252	762.1	Confidence Coefficient	0.95	3	897	1	97				
3 920	835.5	Level of Significance	-1-E12	4	849	9	12		Cherry Grove	Beechmont	
1 1256	1048	Degrees of Freedom	-E9*2/((1/(E5-1))*(E7*2/E5)*2+(1/(F5-1)*(F7*2/F5)*2))	5	891	1	95	Sample Size	28	22	
5 1196	773.8	t Value	-T.INV.2T(E13,E14)	6	964	1	85	Sample Mean	1025	910	
5 1150	807	Margin of Error	=E15*E10	7	810		51	Sample Standard Deviation	150	125	
7 1024	972			8	877	1	82				
8 1016	980	Point Estimate of Difference	-E6-F6	9	899	11	10	Estimate of Variance	1513.8550		
1126	876.6	Lower Limit	-E18-E16	10	847		07	Standard Error	38.9083		
1289	943	Upper Limit	-E18+E16	11	1070	12	26				
1 1220	992.7			12	1252		62	Confidence Coefficient	0.95		
912	704.3			13	920	1	36	Level of Significance	0.05		
3 1026	962.9			14	1256	10	48	Degrees of Freedom	47.8		
4 786	all and a second second			15	1196	3	74	t Value	2.012	-	
5 989				16	1150	1	07	Margin of Error	78		
5 1133	1. E			17	1024	5	72				
7 000				18	1016	5	80	Point Estimate of Difference	115		
000				19	1126	1	77	Lower Limit	31		
1049	(d. 1997)			20	1289	5	43	Upper Limit	193		
)				21	1220	5	93				
				22	912	1	04				
				23	1026	9	63				
				24	786						
				25	989						
				26	1133						
				27	990						
				28	999						
				29	1019						
				30							

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (1 of 7)

Hypotheses

Left-tailed $H_0: \mu_1 - \mu_2 \ge D_0$ $H_a: \mu_1 - \mu_2 < D_0$

Right-tailed $H_0: \mu_1 - \mu_2 \le D_0$ $H_a: \mu_1 - \mu_2 > D_0$ Two-tailed $H_0: \mu_1 - \mu_2 = D_0$ $H_a: \mu_1 - \mu_2 \neq D_0$

Test Statistic

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (2 of 7)

Example: Computer software package

A new computer software package is developed to reduce the time required to design, develop and implement an information system. To evaluate the benefits a random sample of 24 system analysts is selected, 12 of them using current technology and other 12 using new software package.

Can we conclude, using a .05 level of significance, that the mean project completion time for system analysts using the new software package is lesser than the mean project completion time for system analysts using current technology?

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (3 of 7)

Example: Computer coftware pockage				Current Technology	New Software
	LAIMPIE. Computer sonware package			300	274
				280	220
	Sun	nmarv Statisti	CS	344	308
	Comple Cine	10	40	385	336
	Sample Size	12	12	372	198
	Sample Mean	325	286	360	300
	Sample SD	40	44	288	315
				321	258
				376	318
				290	310
				301	332
				283	263

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (4 of 7)

Example: Computer software package

p-Value approach

1. Develop the hypotheses. Right-tailed test:

 $H_0: \mu_1 - \mu_2 \le 0$ $H_a: \mu_1 - \mu_2 > 0$

where:

- $\mu_{\rm 1}$ = the mean project completion time for system analysts using the current technology
- μ_2 = the mean project completion time for system analysts using the new software package

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (5 of 7)

Example: Computer software package

p-Value approach

2. Specify the level of significance $-\alpha = .05$

3. Compute the value of the test statistic.

$$t = \frac{(325 - 286) - 0}{\sqrt{\frac{(40)^2}{12} + \frac{(44)^2}{12}}} = 2.27$$

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (6 of 7)

Example: Computer software package

p-Value approach

4. Compute the *p*-value.

The degrees of freedom for t_{α} are:

$$df = \frac{\left[\frac{(40)^2}{12} + \frac{(44)^2}{12}\right]^2}{\frac{1}{12 - 1}\left[\frac{(40)^2}{12}\right]^2 + \frac{1}{12 - 1}\left[\frac{(44)^2}{12}\right]^2} = 21.8 = 21$$

Hypothesis Tests about $\mu_1 - \mu_2$: σ_1 and σ_2 Unknown (7 of 7)

- **Example:** Computer software package From the table, we see *p*-value is between .025 and .01.
 - 5. Determine whether to reject H_0 .

Because *p*-value $\leq \alpha = .05$, we reject H_0 .

There is sufficient statistical evidence that $\mu_1 - \mu_2 > 0$ or $\mu_1 > \mu_2$ (i.e., new software package provides a smaller population mean completion time).

Area in Upper Tail	.20	.10	.05	.025	.01	.005
<i>t</i> -Value (21 <i>df</i>)	0.859	1.323	1.721	2.080	2.518	2.831
				<i>t</i> :	- = 2.27	,

Excel's "*t*-Test: Two-Sample Assuming Unequal Variances" Tool (1 of 3)

- Step 1 Click the **Data** tab on the Ribbon.
- Step 2 In the Analysis group, click Data Analysis.
- Step 3 Choose *t*-Test: Two-Sample Assuming Unequal Variances from the list of Analysis Tools.
- Step 4 When the *t*-Test: Two-Sample Assuming Unequal Variances dialog box appears, as shown on the following slide:

Excel's "*t*-Test: Two-Sample Assuming Unequal Variances" Tool (2 of 3)

- Enter *A1:A13* in the **Variable 1 Range** box.
- Enter *B1: B13* in the Variable 2 range box.
- Enter *0* in **Hypothesized Mean Difference** box.
- Select Labels.
- Enter .05 in the Alpha box.
- Select **Output Range** and enter *D1*.
- Click OK.

1	A	В	С	D	E	F	G	Н	I	J
1	Current	New								
2	300	274								
3	280	220	t-Test:	Two-Sample	e Assuming U	Inequal Varian	ces		8	×
4	344	308	Input	t						
5	385	336	Varia	able <u>1</u> Range:		\$A\$1:\$A\$	13	E	ОК	
6	372	198	Varia	able <u>2</u> Range:		\$B\$1:\$B\$	13	E	Cancel	
7	360	300							Help	
8	288	315	Нура	Hypothesized Mean Difference: 0						
9	321	258		abels						
10	376	318	Alph	a: 0.05						
11	290	310	Outp	ut options						
12	301	332	() (Outout Range:		D1		-		
13	283	263	0.	Jew Workshee	t Dhe			(1.444)		
14				New Workshee	< <u>⊢</u> y.					
15			01	AGM MOURDOOL						
16										
17										

Excel's "*t*-Test: Two-Sample Assuming Unequal Variances" Tool (3 of 3)

• Excel Value Worksheet

1	A	в	С	D	E	F	G
1	Current	New		t-Test: Two-Sample Assuming Unequal Variances			
2	300	274					
3	280	220			Current	New	
4	344	308		Mean	325	286	
5	385	336		Variance	1599.6364	1935.8182	
6	372	198		Observations	12	12	
7	360	300		Hypothesized Mean Difference	0		
8	288	315		df	22		
9	321	258		t Stat	2.2721		
10	376	318		P(T<=t) one-tail	0.0166		
11	290	310		t Critical one-tail	1.7171		
12	301	332		P(T<=t) two-tail	0.0332		
13	283	263		t Critical two-tail	2.0739		
14							

Inferences about the Difference between Two Population Means: Matched Samples (1 of 6)

- With a <u>matched-sample design</u>, each sampled item provides a pair of data values.
- This design often leads to a smaller sampling error than the independentsample design because variation between sampled items is eliminated as a source of sampling error.

Inferences about the Difference between Two Population Means: Matched Samples (2 of 6)

Example: Comparison of production methods

Two production methods are tested under similar conditions. A random sample of six workers is used.

Task Completion Times For a Matched Sample Design							
Worker	Completion Time for Method 1 (Minutes)	Completion Time for Method 2 (Minutes)	Difference in Completion Times (<i>d_i</i>)				
1	6.0	5.4	.6				
2	5.0	5.2	2				
3	7.0	6.5	.5				
4	6.2	5.9	.3				
5	6.0	6.0	.0				
6	6.4	5.8	.6				

© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Inferences about the Difference between Two Population Means: Matched Samples (3 of 6)

Example: Comparison of production methods

Each worker provides a pair of data values, one for each production method. The test is conducted to determine if the mean completion times differ between the two methods.

Inferences about the Difference between Two Population Means: Matched Samples (4 of 6)

p-value approach

1. Develop the hypotheses.

$$H_0: \mu_d = 0$$
$$H_a: \mu_d \neq 0$$

Let μ_d = the mean of the <u>difference</u> in values for the population of workers

Inferences about the Difference between Two Population Means: Matched Samples (5 of 6)

p-value approach

- 2. Specify the level of significance. $\alpha = .05$
- 3. Compute the value of the test statistic.

$$\overline{d} = \frac{\sum d_i}{n} = \frac{(1.8)}{6} = .30$$

$$s_d = \sqrt{\frac{\sum (d_i - \overline{d})^2}{n - 1}} = \sqrt{\frac{.56}{5}} = .335$$

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}} = \frac{.30 - 0}{.335 / \sqrt{6}} = 2.20$$

Inferences about the Difference between Two Population Means: Matched Samples (6 of 6)

p-value approach

4. Compute the *p*-value.

For t = 2.20 and df = 5, the *p*-value is between .10 and .05. (This is a two-tailed test, so we double the upper-tail areas of .05 and .025.)

5. Determine whether to reject H_0 . Because *p*-value > α = .05, we cannot reject H_0 .

Excel's "*t*-Test: Paired Two Sample for Means" Tool (1 of 3)

- Step 1 Click the **Data** tab on the Ribbon.
- Step 2 In the Analysis group, click Data Analysis.
- Step 3 Choose *t*-Test: Paired Two Sample for Means from the list of Analysis Tools.
- Step 4 When the *t*-Test: Paired Two Sample for Means dialog box appears, as shown on the following slide:

Excel's "*t*-Test: Paired Two Sample for Means" Tool (2 of 3)

- Enter *B1:B7* in the Variable 1 Range box.
- Enter *C1:C7* in the **Variable 2 Range** box.
- Enter *0* in **Hypothesized Mean Difference** box.
- Select Labels.
- Enter *.05* in the **Alpha** box.
- Select **Output Range** and enter *E1*.
- Click OK.

1	A	В	С	D	Е	F	G	H	I	J	K	
1	Worker	Method 1	Method 2									
2	1	6	5.4	t-Test:	t-Test: Paired Two Sample for Means					? ×		
3	2	5	5.2	Input	Input							
4	3	7	6.5	Variable <u>1</u> Range: Variable <u>2</u> Range:		\$B\$1:\$B\$7		ОК				
5	4	6.2	5.9			\$C\$1:5C5	\$C\$1:\$C\$7		Cancel			
6	5	6	6						(L-dada)	Help		
7	6	6.4	5.8	Нурс	oth <u>e</u> sized Me	an Difference:		0		Пер		
8					abels							
9				Alpha	a: 0.05							
10												
11				Outp	ut options		(and)					
12				2 •	2utput Range	:	El					
13				() N	iew Workshe	et <u>P</u> ly:						
14				0 N	lew <u>W</u> orkboo	ok						
15				-				1	-			
16												

Excel's "*t*-Test: Paired Two Sample for Means" Tool (3 of 3)

• Excel Value Worksheet

1	A	В	С	D	E	F	G	Н
1	Worker	Method 1	Method 2		t-Test: Paired Two Sample for Mean	s		
2	1	6	5.4					
3	2	5	5.2			Method 1	Method 2	
4	3	7	6.5		Mean	6.1	5.8	
5	4	6.2	5.9		Variance	0.428	0.212	
6	5	6	6		Observations	6	6	
7	6	6.4	5.8		Pearson Correlation	0.8764		
8					Hypothesized Mean Difference	0		
9					df	5		
10					t Stat	2.196		
11					P(T<=t) one-tail	0.0398		
12					t Critical one-tail	2.015		
13					P(T<=t) two-tail	0.0795		
14					t Critical two-tail	2.571		
15								

