Chapter 12

Tests of Goodness of Fit, Independence, and Multiple Proportions

- Goodness of Fit Test
- Test of Independence
- Testing for Equality of Three or More Population Proportions

Tests of Goodness of Fit, Independence, and Multiple Proportions

- In this chapter we introduce three additional hypothesis-testing procedures.
- The test statistic and the distribution used are based on the chi-square (χ^2) distribution.
- In all cases, the data are categorical.

Goodness of Fit Test: Multinomial Probability Distribution (1 of 4)

- 1. State the null and alternative hypotheses.
 - H_0 : The population follows a multinomial distribution with specified probabilities for each of the *k* categories
 - H_a : The population does <u>not</u> follow a multinomial distribution with specified probabilities for each of the *k* categories

Goodness of Fit Test: Multinomial Probability Distribution (2 of 4)

- 2. Select a random sample and record the observed frequency, f_i , for each of the *k* categories.
- 3. Assuming H_0 is true, compute the expected frequency, e_i , in each category by multiplying the category probability by the sample size

Goodness of Fit Test: Multinomial Probability Distribution (3 of 4)

4. Compute the value of the test statistic.

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(f_{i} - \boldsymbol{e}_{i}\right)^{2}}{\boldsymbol{e}_{i}}$$

where:

 f_i = observed frequency for category *i*

 e_i = expected frequency for category *i*

k = number of categories

Note: The test statistic has a chi-square distribution with k-1 df provided that the expected frequencies are 5 or more for all categories.

Goodness of Fit Test: Multinomial Probability Distribution (4 of 4)

5. Rejection rule:

p-value approach: Reject H_0 if *p*-value $\leq \alpha$

Critical-value approach: Reject H_0 if $\chi^2 \ge \chi^2_{\alpha}$

where α is the significance level and there are k-1 degrees of freedom.

Multinomial Distribution Goodness of Fit Test (1 of 10)

Example: Scott Marketing Research

A market share study conducted by Scott Marketing research has identified that the market for product X is shared by three companies: A, B and C. Company C plans to introduce a new and improved product to replace its current entry in the market. It wants Scott Marketing research to determine whether the new product will alter the market share for the three companies.

Multinomial Distribution Goodness of Fit Test (2 of 10)

Example: Scott Marketing Research

Using the historical market shares, we have a multinomial probability distribution with $p_A = .30$, $p_B = .50$, $p_C = .20$. Scott Marketing research conducts a sample study using a consumer panel of 200 customers.

A hypothesis test can be used to determine whether the new product of company C is likely to change the historical market shares for the three companies. We will use an $\alpha = .05$ level of significance.

Multinomial Distribution Goodness of Fit Test (3 of 10)

Example: Scott Marketing Research

Hypotheses

$$H_0: p_A = .30, p_B = .50, p_C = .20$$

 H_a : The probabilities are <u>not</u> $p_A = .30$, $p_B = .50$, $p_C = .20$

where:

 p_A = probability a customer purchases the company A product p_B = probability a customer purchases the company B product p_C = probability a customer purchases the company C product

Multinomial Distribution Goodness of Fit Test (4 of 10)

Example: Scott Marketing Research

• Expected Frequencies

Category	Expected Frequency				
Company A	200(.30) = 60				
Company B	200 (.50) = 100				
Company C	200 (.20) = 40				
Total	200				

Multinomial Distribution Goodness of Fit Test (5 of 10)

Example: Scott Marketing Research

• Observed Frequencies (from the sample study)

Category	Observed Frequency
Company A	48
Company B	98
Company C	51
Total	200

Multinomial Distribution Goodness of Fit Test (6 of 10)

Example: Scott Marketing Research

Test Statistic

$$\chi^{2} = \frac{(60 - 48)^{2}}{60} + \frac{(100 - 98)^{2}}{100} + \frac{(40 - 51)^{2}}{40}$$
$$= 2.4 + .04 + 4.90$$
$$\chi^{2} = 7.34$$

Multinomial Distribution Goodness of Fit Test (7 of 10)

Example: Scott Marketing Research

Conclusion Using the *p*-Value Approach

Area in Upper Tail	.10	.05	.025	.01	.005
χ^2 Value (2 df)	4.605	5.991	7.378	9.210	10.597
			$\chi^2 = 7.34$		

Because $\chi^2 = 7.34$ is between 5.991 and 7.378, the area in the upper tail of the distribution is between .05 and .025. *p*-value $\leq \alpha$

We reject the null hypothesis.

Multinomial Distribution Goodness of Fit Test (8 of 10)

Example: Scott Marketing Research

Conclusion Using the Critical-Value Approach

With $\alpha = .05$ and 2 degrees of freedom, the critical value for the test statistic is $\chi^2 = 5.991$.

Rejection rule

Reject H_0 if $\chi^2 \ge 5.991$. With 7.34 > 5.991, we reject H_0 .

Multinomial Distribution Goodness of Fit Test (9 of 10)

Example: Scott Marketing Research bar chart of market shares by company before and after the new product for company C.

Multinomial Distribution Goodness of Fit Test (10 of 10)

Example: Scott Marketing Research: Excel Worksheet

	А	В	С	D	Е	1	F					
1	Customer	Preference										
2	1	В										
3	2	А		Categories 💌	Obs. Frequency		А	В	С	D	Е	F
4	3	С		Α	48	1	Customer	Preference	-			-
5	4	С		В	98	2	1	В				
6	5	С		С	54	3	2	А		Categories -	Obs. Frequency	
7	6	А		Total	200	4	3	С		A	48	
8	7	А				5	4	С		В	98	
9	8	А		Hyp. Probability	Exp. Frequency	6	5	С		С	54	
10	9	С		0.3	=D10*\$E\$7	7	6	А		Total	200	
11	10	А		0.5	=D11*\$E\$7	8	7	А				
12	11	С		0.2	=D12*\$E\$7	9	8	А		Hyp. Probability	Exp. Frequency	
13	12	В				10	9	С		0.3	60	
14	13	С		<i>p</i> -value	=CHISQ.TEST(E4:E6,E10:E12)	11	10	А		0.5	100	
15	14	А				12	11	С		0.2	40	
200	199	С				13	12	В				
201	200	С				14	13	С		p-value	0.0255	
202						15	14	А				
						200	199	С				
						201	200	С				
						202						

Test of Independence (1 of 11)

1. Set up the null and alternative hypotheses.

 H_0 : The two categorical variables are independent

 $H_{\rm a}$: The two categorical variables are not independent

- 2. Select a random sample and record the observed frequency, f_{ij} , for each cell of the contingency table.
- 3. Compute the expected frequency, e_{ii} , for each cell.

$$e_{ij} = \frac{(\text{Row } i \text{ Total})(\text{Column } j \text{ Total})}{\text{Sample Size}}$$

Test of Independence (2 of 11)

4. Compute the test statistic.

$$\chi^2 = \sum_i \sum_j \frac{(f_{ij} - \boldsymbol{e}_{ij})^2}{\boldsymbol{e}_{ij}}$$

5. Determine the rejection rule.

p-value approach: Reject H_0 if *p*-value $\leq \alpha$ Critical-value approach: Reject H_0 if $\chi^2 \geq \chi^2_{\alpha}$ where α is the significance level and, with *r* rows and *c* columns, there are (r - 1)(c - 1) degrees of freedom.

Test of Independence (3 of 11)

Example: Beer Industry Association

A sample of 200 beer drinkers is taken. The sample result is summarised in the following table.

Observed frequencies

		Gender		
		Male	Female	Total
Beer Preference	Light	51	39	90
	Regular	56	21	77
	Dark	25	8	33
	Total	132	68	200

Test of Independence (4 of 11)

Example: Beer Industry Association

• Hypotheses

 H_0 : Beer preference is independent of gender H_a : Beer preference is not independent of gender

Test of Independence (5 of 11)

Example: Beer Industry Association

• Expected frequencies

		Gender		
		Male	Female	Total
Beer Preference	Light	59.4	30.6	90
	Regular	50.82	26.18	77
	Dark	21.78	11.22	33
	Total	132	68	200

Test of Independence (6 of 11)

Example: Beer Industry Association

• Rejection Rule

with $\alpha = .05$ and (3-1)(2-1) = 2 d.f., $\chi_{\alpha}^2 = 5.991$ Reject H_0 if *p*-value $\leq .05$ or $\chi^2 \geq 5.991$

Test of Independence (7 of 11)

Example: Beer Industry Association

Computation of Chi-square test statistic

Beer Preference	Gender	Observed frequency f_{ij}	Expected frequency e_{ij}	Difference $(f_{ij} - e_{ij})$	Squared difference $(f_{ij} - e_{ij})^2$	Squared difference / Expected frequency
Light	Male	51	59.4	-8.4	70.56	1.19
Light	Female	39	30.6	8.4	70.56	2.31
Regular	Male	56	50.82	5.18	26.83	.53
Regular	Female	21	26.18	-5.18	26.83	1.02
Dark	Male	25	21.78	3.22	10.37	.48
Dark	Female	8	11.22	-3.22	10.37	.92
	Total	200	200.00			$\chi^2 = 6.45$

Test of Independence (8 of 11)

Example: Beer Industry Association

Conclusion Using the *p*-Value Approach

Area in Upper Tail.10.05.025.01.005 χ^2 Value (2 df)4.6055.9917.3789.21010.597 $\chi^2 = 6.45$

Because $\chi^2 = 6.45$ is between 5.991 and 7.378, the area in the upper tail of the distribution is between .05 and .025. The *p*-value $\leq \alpha$. We can reject the null hypothesis. (Actual *p*-value is .0398.)

Test of Independence (9 of 11)

Example: Beer Industry Association

Conclusion Using the Critical-Value Approach

 $\chi^2 = 6.45 \ge 5.991$

We reject, at the .05 level of significance, the assumption that the beer preference is independent of the gender of the beer drinker.

Test of Independence (10 of 11)

Example: Beer Industry Association

• Bar chart comparison of beer preference by gender

Test of Independence (11 of 11)

• **Example:** Beer Industry Association: Excel Worksheet

1	А	В	C	D	Е	F	G	Н	Ι										
1	Beer Drinker	Preference	Gender																
2	1	Regular	Male																
3	2	Light	Female		Count of Beer Drinker	Gender -			1	Δ	B	C	D	F		F	G	н	I
4	3	Regular	Male	1	Preference 🚽	Male	Female	Total	1	Reer Drinker	Preference	Gender	D	L		1	U		*
5	4	Regular	Male		Light	51	39	90	2	1	Regular	Male							
6	5	Regular	Female	1	Regular	56	21	77	3	2	Light	Female		Count of Beer D	rinker (Gender -			
7	6	Regular	Male	1	Dark	25	8	33	4	3	Regular	Male		Preference	-	Male	Female	Total	
8	7	Dark	Male		Total	132	68	200	5	4	Regular	Male		Light		51	39	90	
9	8	Dark	Male						6	5	Regular	Female		Regular		56	21	77	
10	9	Dark	Male				Gender		7	6	Regular	Male		Dark		25	8	33	
11	10	Light	Female	1	Preference	Male	Female		8	7	Dark	Male			Total	132	68	200	
12	11	Light	Male	1	Light	=(H5*F\$8)/H\$8	=(H5*G\$8)/H\$8		9	8	Dark	Male							
13	12	Dark	Female	1	Regular	=(H6*F\$8)/H\$8	=(H6*G\$8)/H\$8		10	9	Dark	Male				Gend	er		_
14	13	Regular	Male	1	Dark	=(H7*F\$8)/H\$8	=(H7*G\$8)/H\$8		11	10	Light	Female		Preference		Male	Female		
15	14	Regular	Male						12	11	Light	Male		Light		59.40	30.60		_
16	15	Light	Male				=CHISQ.TEST(F5:G7,F12:G14)		13	12	Dark	Female		Regular		50.82	26.18		
17	16	Regular	Male						14	13	Regular	Male		Dark		21.78	11.22		
200	199	Light	Male						15	14	Regular	Male							
201	200	Light	Male						16	15	Light	Male					0.0398		
202	1								17	16	Regular	Male							
									200	199	Light	Male							
								3	201	200	Light	Male							
									202										

Testing for Equality of Population Proportions for Three or More Populations

Using the notation

- p_1 = population proportion for population 1
- p_2 = population proportion for population 2
- p_k = population proportion for population k

The hypotheses for the equality of population proportions for $k \ge 3$ populations are as follows:

 $H_0: p_1 = p_2 = \ldots = p_k$

CENGAGE

 H_a : Not all population proportions are equal.

Testing the Equality of Population Proportions for Three or More Populations (1 of 13)

- If *H*₀ cannot be rejected, we cannot detect a difference among the *k* population proportions.
- If *H*₀ can be rejected, we can conclude that not all *k* population proportions are equal.
- Further analyses can be done to conclude which population proportions are significantly different from others.

Testing the Equality of Population Proportions for Three or More Populations (2 of 13)

Example: Customer loyalty for automobiles

Suppose in a particular study we want to compare the customer loyalty for three automobiles: Chevrolet Impala, Ford Fusion and Honda Accord.

- p_1 = proportion likely to repurchase for the population of Chevrolet Impala owners
- p_2 = proportion likely to repurchase for the population of Ford Fusion owners
- p_3 = proportion likely to repurchase for the population of Honda Accord owners

Testing the Equality of Population Proportions for Three or More Populations (3 of 13)

Example: Customer loyalty for automobiles

- We begin by taking a sample of owners from each of the three populations.
- Each sample contains categorical data indicating whether the respondents are likely or not likely to repurchase the automobile.

Testing the Equality of Population Proportions for Three or More Populations (4 of 13)

Example: Customer loyalty for automobiles

• Observed frequencies (Sample results)

Automobile Owners									
		Chevrolet Impala	Ford Fusion	Honda Accord	Total				
Likely to Repurchase	Yes	69	120	123	312				
	No	56	80	52	188				
	Total	125	200	175	500				

Testing the Equality of Population Proportions for Three or More Populations (5 of 13)

• Next, we determine the expected frequencies under the assumption H_0 is correct

Expected Frequencies under the assumption H_0 is true:

$$e_{ij} = \frac{(\text{Row } i \text{ Total})(\text{Column } j \text{ Total})}{\text{Sum of Sample Sizes}}$$

• If a significant difference exists between the observed and expected frequencies, H_0 can be rejected.

Testing the Equality of Population Proportions for Three or More Populations (6 of 13)

Example: Customer loyalty for automobiles

• Expected frequencies (Computed)

Automobile Owners									
		Chevrolet Impala	Ford Fusion	Honda Accord	Total				
Likely to Repurchase	Yes	78	124.8	109.2	312				
-	No	47	75.2	65.8	188				
	Total	125	200	175	500				

Testing the Equality of Population Proportions for Three or More Populations (7 of 13)

• Next, compute the value of the chi-square test statistic.

$$\chi^2 = \sum_{i} \sum_{j} \frac{\left(f_{ij} - \boldsymbol{e}_{ij}\right)^2}{\boldsymbol{e}_{ij}}$$

where

 f_{ij} = observed frequency for the cell in row *i* and column *j* e_{ij} = expected frequency for the cell in row *i* and column *j* under the assumption H_0 is true Note: The test statistic has a chi-square distribution with k-1 degrees of

Testing the Equality of Population Proportions for Three or More Populations (8 of 13)

• Computation of the Chi-Square Test Statistic.

Likely to repurchase	Automobile owner	Observed frequency <i>f_{ii}</i>	Expected frequency e _{ij}	Difference $\left(f_{ij}-e_{ij}\right)$	Squared difference $\left(f_{ij} - e_{ij}\right)^2$	Squared difference/ Expected frequency
Yes	Impala	69	78.0	-9.0	81.00	1.04
Yes	Fusion	120	124.8	-4.8	23.04	0.18
Yes	Accord	123	109.2	13.8	190.44	1.74
No	Impala	56	47.0	9.0	81.00	1.72
No	Fusion	80	75.2	4.8	23.04	0.31
No	Accord	52	65.8	-13.8	190.44	2.89
		500	500.0			$\chi^2 = 7.89$

Testing the Equality of Population Proportions for Three or More Populations (9 of 13)

Rejection Rule

p-value approach: Reject H_0 if *p*-value $\leq \alpha$. Critical-value approach: Reject H_0 if $\chi^2 \geq \chi^2_{\alpha}$ where α is the significance level and there are k-1 degrees of freedom.

Testing the Equality of Population Proportions for Three or More Populations (10 of 13)

Example: Customer loyalty for automobiles

Conclusion Using the *p*-Value Approach

Area in Upper Tail	.10	.05	.025	.01	.005
χ^2 Value (2 <i>df</i>)	4.605	5.991	7.378	9.210	10.597
		x	$c^2 = 7.89$	1	

Because $\chi^2 = 7.89$ is between 7.378 and 9.210, the area in the upper tail of the distribution is between .025 and .01. The *p*-value $\leq \alpha$. We can reject the null hypothesis. (Actual *p*-value is .0193.)

CENGAGE

Testing the Equality of Population Proportions for Three or More Populations (11 of 13)

Example: Customer loyalty for automobiles

Conclusion using the critical-value approach

With α – .05 and 2 degrees of freedom, the critical value for the chi-square test statistic is $\chi^2 = 5.991$. $\chi^2 = 7.89 > 5.991$: We reject the hypothesis.

Conclusion: There is a difference in brand loyalties among Chevrolet Impala, Ford Fusion, and Honda accord owners.

Testing the Equality of Population Proportions for Three or More Populations (12 of 13)

• Excel Worksheets

A	В	С	D	E	F	G	Н	1	J										
1 Owner	Automobile	Likely Repurchase																	
2 1	Chevrolet Impala	Yes																	
3 2	Chevrolet Impala	Yes		Count of Owner	Automobile					A	B	С	D	E	F	G	н	I	I
4 3	Chevrolet Impala	No		Likely Repurchase	Chevrolet Imp	ala Ford Fusio	n Honda Accord	Total	1 0	Owner	Automobile	Likely Renurchase				~	**		
5 4	Chevrolet Impala	Yes		Yes	69	120	123	312	2	1	Chevrolet Impala	Yes							
6 5	Chevrolet Impala	Yes		No	56	80	52	188	3	2	Chevrolet Impala	Yes		Count of Owner	Automobile -				
7 6	Chevrolet Impala	Yes		Tota	1 125	200	175	500	4	3	Chevrolet Impala	No		Likely Repurchase	Chevrolet Impala	Ford Fusion	Honda Accord	Total	
8 7	Chevrolet Impala	Yes							5	4	Chevrolet Impala	Yes		Yes	69	120	123	312	
9 8	Chevrolet Impala	Yes							6	5	Chevrolet Impala	Yes		No	56	80	52	188	
10 9	Chevrolet Impala	No			Automobile				7	6	Chevrolet Impala	Yes		Tota	125	200	175	500	
11 10	Chevrolet Impala	Yes		Likely Repurchase	Chevrolet Imp	oala Ford Fusio	n Honda Accord		8	7	Chevrolet Impala	Yes							
12 11	Chevrolet Impala	Yes		Yes	=(15*F7)/17	=(15*G7)/17	=(I5*H7)/17		9	8	Chevrolet Impala	Yes							
13 12	Chevrolet Impala	No		No	=(16*F7)/17	=(I6*G7)/I7	=(I6*H7)/17		10	9	Chevrolet Impala	No			Automobile				
14 13	Chevrolet Impala	Yes							11	10	Chevrolet Impala	Yes		Likely Repurchase	Chevrolet Impala	Ford Fusion	Honda Accord		
15 14	Chevrolet Impala	No				p-value	=CHISQ.TEST(F5:H6,F12:H13)		12	11	Chevrolet Impala	Yes		Yes	78	124.8	109.2		
16 15	Chevrolet Impala	No							13	12	Chevrolet Impala	No		No	47	75.2	65.8		
500 499	Honda Accord	No							14	13	Chevrolet Impala	Yes				1775			
501 500	Honda Accord	No							15	14	Chevrolet Impala	No				z-value	0.0193		
502									16	15	Chevrolet Impala	No							
									500	400	Ilonda Accord	No							
									501	500	Honda Accord	No							
								-	502										

Testing the Equality of Population Proportions for Three or More Populations (13 of 13)

- We have concluded that the population proportions for the three populations of automobile owners are not equal.
- To identify where the differences between population proportions exist, we will rely on a multiple comparisons procedure.

Multiple Comparisons Procedure (1 of 4)

• We begin by computing the three sample proportions.

Chevrolet Impala:
$$\bar{p}_1 = \frac{69}{125} = .5520$$

Ford Fusion: $\bar{p}_2 = \frac{120}{200} = .6000$
Honda Accord: $\bar{p}_3 = \frac{123}{175} = .7029$

• We will use a multiple comparison procedure known as the Marascuillo procedure.

Multiple Comparisons Procedure (2 of 4)

Marascuillo Procedure

We compute the absolute value of the pairwise difference between sample proportions.

 Chevrolet Impala and Ford Fusion
 $|\bar{p}_1 - \bar{p}_2| = |.5520 - .6000| = .0480$

 Chevrolet Impala and Honda Accord
 $|\bar{p}_1 - \bar{p}_3| = |.5520 - .7029| = .1509$

 Ford Fusion and Honda Accord
 $|\bar{p}_1 - \bar{p}_2| = |.6000 - .7029| = .1029$

Multiple Comparisons Procedure (3 of 4)

- Critical Values for the Marascuillo Pairwise Comparison
 - For each pairwise comparison compute a critical value as follows:

$$CV_{ij} = \sqrt{\chi_{\alpha,k-1}^2} \sqrt{\frac{\overline{p}_i(1-\overline{p}_i)}{n_i}} + \frac{\overline{p}_j(1-\overline{p}_j)}{n_j}$$

For $\alpha = .05$ and $k = 3$: $\chi^2 = 5.991$

Multiple Comparisons Procedure (4 of 4)

Pairwise Comparison Tests

Pairwise Comparison	$\left \overline{\boldsymbol{p}}_{i}-\overline{\boldsymbol{p}}_{j}\right $	CV_{ij}	Significant if $\left \overline{p}_{i} - \overline{p}_{j} \right > CV_{ij}$
Chevrolet Impala and Ford Fusion	.0480	.1380	Not significant
Chevrolet Impala and Honda Accord	.1509	.1379	Significant
Ford Fusion and Honda Accord	.1029	.1198	Not significant

