Errata for Python for Finance (2nd edition,2017) (ISBN: 978-1-78712-569-8) Publisher: Packt Publishing

Yuxing Yan¹ 11/24/2018

I thank Justin Lee, WANG Dehong, Kim JongHun, Matthew Hosseini, Sam K., and several anonymous readers for pointing out typos, errors and making some suggestions. I am sorry for the inconvenience caused to my readers. If you find new typos/errors, please let me know. A few useful links and paths.

For the fincal.py function	on, see the link at	http://canisius.edu/~yany/doc/fincal.pdf
For the Python data sets, the new path is		http://canisius.edu/yany/data/python/
·		http://canisius.edu/~yany/data/python/list.txt
For the Python program	s, the new path is	http://canisius.edu/~yany/soft/python/
For example, f	for p4f.pyc,	http://canisius.edu/~yany/soft/python/p4f.pyc
Or the second	one <u>http://canisius</u>	.edu/~yany/soft/python/p4f.cpython-36.pyc
For fincal.pyc,	,	http://canisius.edu/~yany/soft/python/fincal.pyc
Or another linl	k at <u>http://c</u>	canisius.edu/~yany/soft/python/fincal.cpython-36.pyc
For the loadYan() fund	ction,	http://canisius.edu/~yany/soft/python/loadYan.py
		http://canisius.edu/~yany/soft/python/loadYan.py.txt
All code on Github,	https://github.c	om/PacktPublishing/Python-for-Finance-Second-Edition
For the SEC index files		
One example:	http://canisius.edu/~yar	ny/data/sec/pickle/index1993q1.pkl (1993Q1 to 2018Q4)
	http://canisius.edu/~yar	ny/data/sec/pickle/list.txt
Python program	n: http://canisius.edu/~ya	any/soft/python/loadSECindex.py
	http://canisius.edu/~yar	ny/soft/python/loadSECindex.py.txt

1) The issue related Yahoo!Finance

Since Yahoo!Finance has changed its data structure, many old functions would not work, see one example below (on page 25)

```
import re
from matplotlib.finance import quotes_historical_yahoo_ochl
ticker='dell'
outfile=open("c:/temp/dell.txt","w")
begdate=(2013,1,1)
enddate=(2016,11,9)
p=quotes_historical_yahoo_ochl
(ticker,begdate,enddate,asobject=True,adjusted=True)
outfile.write(str(p))
outfile.close().
```

There are three solutions: 1) manually download the data first, then write a Python program to retrieve it, 2) use a fix_yahoo function, 3) use the Quandl data delivery platform.

Method I: manually download the data first, then write a Python program to retrieve it, see the code below.

¹ My email address is <u>yany@canisius.edu</u>. Location of this file: <u>http://canisius.edu/~yany/doc/errataP4F.pdf</u>, <u>http://datayyy.com/doc/errataP4F.pdf</u>, and <u>https://github.com/sumhncku/errata-for-Python-for-Finance-2ed</u>

<pre>Import pandas as pd inFile='http://canisius.edu/~yany/data/ibmMonthly.csv' df = pd.read_csv(inFile, index_col=0) print(df.head())</pre>							
	Open	Нigh	Low	Close	Adj Close	Volume	
Date							
1962-01-01	7.713333	7.713333	7.003334	7.226666	0.634921	8760000	
1962-02-01	7.300000	7.480000	7.093333	7.160000	0.629064	5737600	
1962-03-01	7.186666	7.413333	7.070000	7.103333	0.624170	5344000	
1962-04-01	7.100000	7.100000	6.000000	6.053333	0.531907	12851200	
1962-05-01	6.053333	6.530000	4.733333	5.233333	0.459853	49307200	

Method II: use a Python package called fix_yahoo_finance, see the code below.

import fix_yahoo_finance as yf data = yf.download("IBM", start="2017-01-01", end="2017-04-30") print(data.head()) print(data.head()) Open High Low Close Adj Close Date 2017-01-03 225.039993 225.830002 223.880005 225.240005 219.079453 2017-01-04 225.619995 226.750000 225.610001 226.580002 220.382797 2017-01-05 226.270004 226.580002 225.479996 226.399994 220.207718 2017-01-06 226.529999 227.750000 225.899994 227.210007 220.995575 2017-01-09 226.910004 227.070007 226.419998 226.460007 220.266083

Method III: using Quandl data deliverary platform, see the code below.

import quandl as qd
y=qd.get("WIKI/ibm")
y.head()

The output is shown below.

In [19]: y.	head()										
out[15].	0pen	High	Low	Close	Vo	lume	Ex-Div	idend	Split	Ratio	١
Date		-									
1962-01-02	578.5	578.5	572.0	572.00	193	50.0		0.0		1.0	
1962-01-03	572.0	577.0	572.0	577.00	1440	0.00		0.0		1.0	
1962-01-04	577.0	577.0	571.0	571.25	128	0.00		0.0		1.0	
1962-01-05	570.5	570.5	559.0	560.00	181	50.0		0.0		1.0	
1962-01-08	559.5	559.5	545.0	549.50	272	0.00		0.0		1.0	
	Adj. O	pen Ad	j. High	Adj.	Low	Adj.	Close	Adj.	Volume		
Date											
1962-01-02	15.270	839 15	.270839	15.099	9257	15.	099257	38	7200.0		
1962-01-03	15.099	257 15	.231243	15.099	9257	15.	231243	28	8000.0		
1962-01-04	15.231	243 15	.231243	15.072	2860	15.	079459	25	6000.0		
1962-01-05	15.059	661 15	.059661	14.756	5092	14.	782489	36	3200.0		
1962-01-08	14.769	291 14	.769291	14.386	6530	14.	505318	54	4000.0		
In [20]:											

Note: see the next comment for the instruction on how to download the Quandl package.

2) How to install the Quandl package?

Method I:

conda install quandl

Method II:

pip install quandel

If using Canopy, see the image below.

Editor - Canopy	-	and the second			-
ile Edit View	Search Ru	n Tools Window Help			
Package Manag	er - Canopy	1.44.5-1.6			. e <mark>x</mark>
~	\	Package Manager		C Refresh • N	ot logged in.
CANO	PY	Install, update or remove your P	Python packages	Q quand	0
Installed		Package Name	Latest Availa	ble Version	
Installed	1/124	0 quandl	3.1.0-5		
Available	1/607				

Help: https://docs.quandl.com/

3) Chapter 1, page 17

From

>>> import pandas as pd >>>url=url='http://canisius.edu/~yany/data/ibm.csv'

То

>>> import pandas as pd >>> url='http://canisius.edu/~yany/data/ibm.csv'

4) Chapter 2, page 47

For the old code, see below.

import datetime import matplotlib.pyplot as plt from matplotlib.finance import quotes_historical_yahoo_ochl from matplotlib.dates import MonthLocator,DateFormatter ticker='AAPL' begdate= datetime.date(2012, 1, 2)

То

```
import datetime
import fix_yahoo_finance as yf
import matplotlib.pyplot as plt
from matplotlib.dates import MonthLocator,DateFormatter
x=yf.download("AAPL", start="2012-01-02", end="2013-12-05")
months = MonthLocator(range(1,13), bymonthday=1, interval=3)
monthsFmt = DateFormatter("%b '%Y")
if len(x) == 0:
```

```
print ('Found no quotes')
raise SystemExit
dates=x.index
closes=x['Adj Close']
fig, ax = plt.subplots()
ax.plot_date(dates, closes, '-')
ax.xaxis.set_major_locator(months)
ax.autoscale_view()
ax.grid(True)
fig.autofmt_xdate()
```

5) Chapter 2, pages 48 and 50

For the related code, see below.

monthsFmt = DateFormatter("%b '%Y")
x = quotes_historical_yahoo_ochl(ticker, begdate, enddate)

То

See comments 1) and 2)

6) Chapter 2, page 52

From

The columns() function defines the names of those columns

То

The 'columns' input variable defines the names of those columns

7) Chapter 2, pages 54-55

From

```
import pandas as pd
import numpy as np
np.random.seed(123) # fix the random numbers
x=np.arange(1, 10.1, .25)**2
n=np.size(x)
y = pd.Series(x + np.random.randn(n))
bad=np.array([4,13,14,15,16,20,30]) # generate a few missing values
x[bad] = np.nan # missing code is np.nan
methods = ['linear', 'quadratic', 'cubic']
df = pd.DataFrame({m: x.interpolate(method=m) for m in methods})
df.plot()
```

То

```
import numpy as np
import pandas as pd
np.random.seed(123) # fix the random numbers
x=np.arange(1, 10.1, .25)**2
n=np.size(x)
y = pd.Series(x + np.random.randn(n))
bad=np.array([4,13,14,15,16,20,30]) # generate a few missing values
y[bad] = np.nan # missing code is np.nan
methods = ['linear', 'quadratic', 'cubic']
df = pd.DataFrame({m: y.interpolate(method=m) for m in methods})
df.plot()
```

8) Chapter 2, page 55

From

that is, an absolute address, we have the following code: df.to_pickle('test.pkl')

То

that is, an absolute address, we have the following code: df.to_pickle('c:/temp/test.pkl')

9) Chapter 2, page 56

10) Chapter 2, page 60

From

import pandas_datareader.data as web
df=web.get_data_google("ibm")

То

```
import fix_yahoo_finance as yf
data = yf.download("IBM", start="2018-01-01", end="2018-11-13")
print(data.head())
```

11) Chapter 2, page 62

From

http://canisius.edu/~yany/fincal.cpython-35.pyc

То

http://canisius.edu/~yany/soft/python/fincal.cpython-36.pyc
or
http://canisius.edu/~yany/soft/python/fincal.pyc

12) Chapter 3, page 82

From

Appendix B shows how to download it

То

Appendix D shows how to download it

13) Chapter 3, page 83

>>>	>>>
fincal.pv_f(0.1,1100)	fincal.pv_f(0.1,1,100)

14) Chapter 3, page 84

From

see the Writing your own financial calculator written in Python section and Appendix H.

То

see the Writing your own financial calculator in Python section and Appendix G.

15) Chapter 3, page 85

From

If the monthly rate is 0.25% and he plans to pay back \$200 per month

То

If the monthly rate is 1.2% and he plans to pay back \$200 per month

16) Chapter 3, page 100

From

If the same cash flow happens at the same interval forever, it is called perpetuity. If the discount rate is a constant and the fi rst cash flows happens at the end of the first period, its present value has the following.

То

If the same cash flow happens at the same interval forever, it is called perpetuity. If the discount rate is a constant and the first cash flows happens at the end of the first period, its present value has the following equation.

PV(Perpetuity) = C / R

17) Chapter 3, page 107

From

Richard has just finished a very difficult sophomore

(second) year, including taking several finance courses. Richard would very much like to take a long vacation.

То

Peter has just finished a very difficult sophomore

(second) year, including taking several finance courses. Peter would very much like to take a long vacation.

18) Chapter 4, page 123

From

The following graph shows how IBM's returns distributed plus a normal distribution. The price moment is shown on the right and its Python program is included in Appendix A:

То

The following graph shows how IBM's returns distributed plus a normal distribution and its Python program is included in Appendix A. The price movement is shown on the right and its Python program is included in Appendix C:

19) Chapter 4, page 127

From

import pandas_datareader.data as getData
vix = DataReader("VIXCLS", "fred")

То

import pandas_datareader.data as getData
vix = getData.DataReader("VIXCLS", "fred")

20) Chapter 4, page 124

From

The so-called candle-stick picture could be used to vividly present a stock price or trading volume, as shown in the following screenshot. The corresponding Python program is in Appendix C:

То

The so-called candle-stick picture could be used to vividly present a stock price or trading volume, as shown in the following screenshot. The corresponding Python program is in Appendix B:

21) Chapter 4, page 125

From

The following screenshot shows a stock's intraday moment. The related Python program is included in Appendix C:

То

The following screenshot shows a stock's intraday movement. The related Python program is included in Appendix D:

22) Chapter 4, page 131

From

http://canisius.edu/~yany/ loadYan.py

То

http://canisius.edu/~yany/soft/python/loadYan.py http://datayyy.com/python/loadYan.py.txt http://canisius.edu/~yany/python/loadYan.py

23) Chapter 4, page 133

From

indexDaily.pkl Index file with a monthly frequency

То

indexDaily.pkl Index file with a daily frequency

24) Chapter 4, page 139 (candle stick image)

For the new code, see below.

```
from math import pi
import pandas as pd
from bokeh.sampledata.stocks import MSFT
from bokeh.plotting import figure, show, output_file
df = pd.DataFrame(MSFT)[:50]
df["date"] = pd.to_datetime(df["date"])
mids = (df.open + df.close)/2
spans = abs(df.close-df.open)
inc = df.close > df.open
dec = df.open > df.close
w = 12*60*60*1000 # half day in ms
output_file("c://temp/candlestick.html", title="candlestick.py example")
TOOLS = "pan,wheel_zoom,box_zoom,reset,save"
p = figure(x_axis_type="datetime", tools=TOOLS, plot_width=1000,
toolbar_location="left")
p.segment(df.date, df.high, df.date, df.low, color="black")
p.rect(df.date[inc], mids[inc], w, spans[inc], fill_color="#D5E1DD",
line color="black")
p.rect(df.date[dec], mids[dec], w, spans[dec], fill_color="#F2583E",
line_color="black")
#p.title = "MSFT Candlestick"
p.xaxis.major_label_orientation = pi/4
p.grid.grid_line_alpha=0.3
#show(p)
         # open a browser
```

25) Chapter 5, page 152

Bank A offers an annual rate of 8% compounded semi-annually

Bank A offers an annual percentage rate of 8% compounded semi-annually

26) Chapter 5, page 154

27) Chapter 5, page 155

>>Rs=(1+0.05/2)**(2/12)-1

>>Rs=(1+0.05/2)**(2/12)-1

>>>Rs*2	>>>Rs*12
0.008247830930288469	0.049486985581730814

28) Chapter 5, page 168

29) Chapter 5, page 170

From

http://canisius.edu/~yany/fincal.cpython-35.pyc

То

http://canisius.edu/~vany/soft/python/fincal.cpython-36.pyc
or
http://canisius.edu/~vany/soft/python/fincal.pyc

30) Chapter 6, page 189

From

Now let's look at how to estimate the beta (market risk) for Microsoft

То

Now let's look at how to estimate the beta (market risk) for IBM

31) Chapter 6, page 189

ticker='MSFT'		ticker='IBM'
---------------	--	--------------

32) Chapter 6, page 191

From

The output for Walmart's beta (market risk) is as follows:

То

The output for IBM's beta (market risk) is as follows:

33) Chapter 6, page 195

From

http://canisius.edu/~yany/python/yanMonthly.pkl

То

http://canisius.edu/~yany/data/python/yanMonthly.pkl

34) Chapter 6, page 198

From

```
from
….
f.close()
```

То

[note the data set at : http://canisius.edu/~yany/python/callsFeb2014.pkl]

```
import pandas as pd
infile="c:/temp/callsFeb2014.pkl"
outFile=open("c:/temp/callsFeb2014.csv","w")
calls=pd.read_pickle(infile)
calls.to_csv(outFile,index=False)
```

35) Chapter 6, page 199

From

The following program fi rst retrieves IBM price data, and then saves it as a .csv file under c:/temp:

То

The following program fi rst retrieves IBM price data, and then saves it as a .xlsx file under c:/temp:

36) Chapter 6, page 202

From

# lstrip() would remove spaces before and the end of string						
<pre># rstrip() would remove spaces before and the end of string</pre>						

То

lstrip() would remove leading white spaces of string
rstrip() would remove trailing white spaces of string

37) Chapter 6, page 204

From

download Canopy, such as winders 32-bit

То

download Canopy, such as Windows 32-bit

38) Chapter 6, page 206

From

After clicking the green bottom, we can run the program:

То

After clicking the green button, we can run the program:

39) Chapter 7,

From

https://github.com/PacktPublishing/Python-for-Finance-Second-Edition/blob/master/Chapter07/c7_01_3factor_model.py

То

http://canisius.edu/~yany/python/c7 01 3factor model2.py.txt

40) Chapter 7, page 217

41) Chapter 7, page 220

From

```
Next, we show how to run a Fama-French three-factor regression using 5-year
monthly data. The added twist is that the historical price data is
downloaded first. Then we calculate monthly returns and convert them to
monthly ones
```

То

Next, we show how to run a Fama-French three-factor regression using 5-year daily data. The added twist is that the historical price data is downloaded first. Then we calculate daily returns and convert them to monthly ones

42) Chapter 7, page 235

From

ffDaily.pkl Fama-French-Carhart daily four factors ffcDaily.pkl Fama-French daily five factors ffDaily5.pkl Fama-French monthly four factors

То

ffDaily.pkl Fama-French daily three factors ffcDaily.pkl Fama-French-Carhart daily four factors ffDaily5.pkl Fama-French daily five factors

43) Chapter 9, page 314

From

function 4: for given n-1 weights, return a negative Sharpe ratio def
negative_treynor_n_minus_1_stock(w):

То

function 4: for given n-1 weights, return a negative Treynor ratio def negative_treynor_n_minus_1_stock(w):

44) Chapter 10, page 379 (Volatility simile and skewness)

Issue: quotes_historical_yahoo_ochl is no longer working. The original program:

http://canisius.edu/~yany/python/c10_37_volatility_smile.txt

New program.

http://canisius.edu/~yany/python/volatility_smile_using_quandl.py http://canisius.edu/~yany/python/volatility_smile_using_quandl.py.txt (easy to view)

45) Chapter 10, page 379

Issue: how to get call options data

Method I: download yourself. Below I use IBM call options data as an example.

Step 1: go to http://finance.yahoo.com

Step 2: enter IBM

Step 3: click "Options",

https://finance.yahoo.com/quote/IBM/options?p=IBM

Step 4: manually copy and paste

Method II: download the text file from my website.

http://canisius.edu/~yany/data/callsIBM3Aug2018.txt

Method III: download a pickle file from my website.

http://canisius.edu/~yany/python/callsIBM3Aug2018.pkl

99) Pages 170, 191, 211 etc.: How to call p4f module

First, you could download p4f.pyc at <u>http://canisius.edu/~yany/python/p4f.pyc</u> **Method I:**

Step 1: find out all directories the Python software could access by using sys.path command to see a list of directories that Python software could access.

```
In [10]: sys.path
Out[10]:
E''
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\User\\Scripts\\python27.zip',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86\\DLLs',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\appdata\\canopy-1.7.4.3348.win-x86\\lib',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86\\lib\\plat-win',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\appdata\\canopy-1.7.4.3348.win-x86\\lib\\lib-tk',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\User'
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\User\\lib\\site-packages',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\User\\lib\\site-packages\\win32',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\User\\lib\\site-packages\\win32\\lib',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\User\\lib\\site-packages\\Pythonwin',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86\\lib\\site-packages\\win32',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86\\lib\\site-
packages\\win32\\lib',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86\\lib\\site-
packages\\Pythonwin',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86\\lib\\site-
packages\\IPython\\extensions',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata',
 'C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86'
 C:\\Users\\yany\\AppData\\Local\\Enthought\\Canopy32\\App\\appdata\\canopy-1.7.4.3348.win-x86\\lib\\site-packages',
 'C:\\Users\\yany\\.ipython']
```

Step 2: copy p4f.pyc file to one of the above subdirectories. For me, I coped it to C:\Users\yany\AppData\Local\Enthought\Canopy32\User

Method II: assume the download file is under c:/temp/. Add the directory using sys.path.append() function, see below.

>>sys.path.append("c:/temp")

In [22]: import p4f

In [22]:

In [23]: x=dir(p4f)

In [24]: print(x)

In [24], pint(x) ['CND', 'EAR_f', 'EBITDA_value', 'IRR_f', 'IRRs_f', 'NPER', 'PMT', 'Rc_f', 'Rm_f', '__builtins__', '__doc__', '__file__', '__name__', '__package__', '__request', 'binomial_grid', 'bond_price', 'bs_call', 'bs_call_old', 'bs_put', 'convert_B_M', 'dailyReturn', 'delta_call', 'delta_put', 'duration', 'durationBond', 'fv_annuity', 'fv_f', 'get_200day_moving_avg', 'get_50day_moving_avg', 'get_52week_high', 'get_52week_low', 'get_EBITDA', 'get_all', 'get_avg_daily_volume', 'get_book_value', 'get_change', 'get_dividend_per_share', 'get_dividend_yield', 'get_earnings_per_share', 'get_historical_prices', 'get_market_cap', 'get_price', 'get_price_book_ratio', 'get_price_earnings_growth_ratio', 'get_price_earnings_ratio', 'get_price_sales_ratio', 'get_short_ratio', 'get_stock_exchange', 'get_volume', 'market_cap', 'mean', 'modified_duration', 'n_annuity', 'npv_f', 'payback_', 'payback_period', 'pvValueNperiodModel', 'pv_annuity', 'pv_annuity_k_period_from_today', 'pv_excel', 'pv_f', 'pv_grow_perpetuity', 'pv_growing_annuity', 'pv_perpetuity', 'pv_perpetuity_due', 'r_continuous', 'sign', 'urllib']